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FACTOR COVARIANCE ANALYSIS IN SUBGROUPS*

Roger Pennell

Educational Testing Service

Abstract

The problem conside-ed is that of an investigator sampling two or

more correlation matrices and desiring to fit a model of the form

+ U.
2

. Here the factor pattern matrix, P , is assumed to

be identical across samples and we need to estimate (1)

i
and U. .

A flexible, least squares solution is worked out and illustrated with

an example.

*The author wishes to acknowledge the impetus provided by an unpublished
paper by Samuel Messick detailing the problem solved in the present paper.
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FACTOR COVARIANCE ANALYSIS IN SUBGROUPS

I. Introduction

An investigator frequently ffnds himself confronted with data from two

or more groups. The groups frequently arise (1) by longitudinally or cross-

sectionally measuring samples of subjects on the same variables or (2) by

partitioning a sample into subgroups using an explicitly defined selection

variable. An example of the first category may involve measuring all students

from the 7th, 9th, and 11th grades on a set of variables or measuring a group

of students in year v and again in years v + 2 and v + 4 . An example

of the second may occur by dividing a sample into two groups based on sex or

into multiple groups based on the kind of teaching philosophy they have been

exposed to, etc.

The investigator may want to compare the factorial composition of the

groups using factor analysis. What is most frequently done is to factor analyze

the respective correlation matrices and use an orthogonal or oblique Procrustes

procedure to rotate the two initial solutions to a position of maximum congru-

ence. This is surely the least defensible approach, theoretically, and in

practice often produces ambiguous results (e.g., Meredith, 1964a). Indeed

for purposes of orthogonal factor matching, one is embracing a very strong

model, to wit diagonal factor covariance matrices within groups and common

factor patterns across groups.

Meredith (1964b) has proposed a general solution for the above situation.

He assumes the subgroups arise by multivariate selection on known or unknown

selection variables. After finding an orthogonal factor pattern for each

subgroup, each pattern is rotated to be as similar as possible while per-

mitting the factor covariance matrices to vary.
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There are other models which attempt to synthesize the results of two

factor analyses or, in fact, to produce factor-analytic results directly for

two groups of subjects or batteries of tests. Such a model was proposed by

Corballis and Traub (1970) to assess the degree of change between two sets of

factors measured on two occasions on the same set of subjects. Their procedure

estimates the within-occasion factor matrices and then finds rotation matrices

and measures of factor similarity which together approximate the between-

occasion correlations. This model requires very strong assumptions, namely,

near symmetry of the between-occasion correlation matrix. As this matrix

departs from symmetry, the rotation matrices necessarily impose greater

disparity on the two within-occasion matrices, thus rendering the presumption

of same factors across occasions less compelling. Corballis and Traub (1970)

note this potential difficulty, but do not relate it to the between-occasion

correlation matrjx.

Interbattery factor analysis (Kristof, 1967; Tucker, 1958) is another

method of investigating the factor-analytic structure of two batteries of

tests. Kristof's (1967) model hypothesizes a set of factors common to both

batteries and a set unique to each battery. This method is important because

it finds variables in both batteries which mark the same factor and thus

provides continuity between batteries composed of possibly different measures.

If the same measure, or set of measures, is included in each battery, differ-

ences in the observed pattern of factor loadings may be due to the factor

measuring a different trait in one battery or may reflect differing factor

covariances (other than orthogonal).

We shall propose a somewhat different model, one that postulates virtually

identical factor patterns across groups, but permits the factor covariance and
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factor structure matrices within groups to vary. Namely, the model assumed to

hold in each group is

(1) Z. = PX. + U.Y.
1 1 1 1

where Z. is a row centered, observed score matrix of n tests by N

observations, P is an n x q factor pattern matrix, X. is a q x N

common factor score matrix, U. is an n x n diagonal matrix of unique

standarddeviations,andLis an n x N matrix of unique factor scores.
1

Ifweassumex.V=OandasuitablescalingonX.1 , the factor-test
1 1

covariance matrix (structure matrix; Harman, 1967) for each group is

(2) S.
1

= Pcpi

where (Pi = X.X! , the factor covariance matrix. Translated into practical
1 1

terms the model in (1) and (2) says that the one way in which we can opera-

tionally insure the enduring nature of general psychological traits (factors)

is by requiring the same linear combination (P) of the factor scores to

reproduce the common portion of the observed scores. The pattern matrix

( P ; Harman, 1967) is typically the matrix factor analysts use to under-

stand the factors they obtain, and is thus one way to conceptualize a set of

enduring psychological traits. The traits may change in the way they covary

with the observed tests (Si) and with other traits (q)i) , but at least we

are certain of our ground in calling them the same factors. The model differs

from Meredith's (1964b) in that we assume factorial invariance to begin with.

II. Method

Assume we are given p covariance matrices Ci , i = 1,2,...,p ,

among n tests or measures,with Ni observations made on each measure in
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the i
th

set. We wish to estimate a matrix P such that

(3) R. = P(piP' + U.
2

holds in each subgroup, i ; here, Ri is an n x n correlation matrix,

.q).isqxq,andU2.Is an n x n diagonal matrix of unique variances.

Apparently, the most stable estimate available would result from pooling the

group covariance matrices as

(4) C= E (Ni - 1)C.
N

1

- p 1

where N = FN. , and scaling C to a correlation matrix as

( 5 ) R = DCD

where D is diagonal and contains the reciprocals of the square roots of the

diagonal part of C . For R we are considering the model

(6) R = Potl" + U
2

At this point we merely need to estimate U2 and factor R U2 using any

number of available routines. Assume

(7) R = A A2A' + 62

is such a factorization with A orthogonEd by columns and of rank q < n .

Let T be any satisfactory obliqua, q x q , transformation matrix. A

suitable estimate of P is given by

(8) P = AA(TI)-1
5

(Harman, 1967, p. 284).

In order to insure a common scaling in each subgroup we use D from

(5) as



(9) R. = DC.D

-5-

ItshouldbenotedthatR.is not a correlation matrix for the i
th

subgroup,

but, rather, the i
th

covariance matrix with the population scaling imposed.

Theproblemnowistoestimate6.from the model

(10) R. = P6.P' + 1?

ThiscanbedonewithnoknowledgeoftheU.2 by observing that the off-
].

A A

diagonal elements of R. are functions of PcpiP' only. Therefore, let us

consider the n(n - 1)/2 unique linear equations for these off-diagonal

elements. They can be written in general equational form as

rij

i = 1,2,...,n-1

j = i+1,i+2,...,n

q-1 q

(1)12,m(Pigjm PimPjk)
St=1 m= k+1

a

1- PikPjk'6kk
+ e

-Jk=1

Let 6 represent a column vector of the n(n 1)/2 elements a
ij

column vector of the unknown 6stm , and B the n(n - 1)/2 x q(q + 1)/2 matrix

of coefficients. Equation (11) can then be written in matrix notation as

(11a) 0 = + E

where E is a vector of errors with the same order as 6 . Then clearly the

sum of squared errors, E'E , is minimized by taking

(12) = (B'B) 113'6

^ ^

Now we need only array the elements of in the symmetric matrix

and produce a least squares estimate of R. and U. . Note that

(13) U. = Diag(R. - Pcpip')



and

2
(14) R. = Pcp.P1 + U.

III. Computational Considerations

Since B is of order n(n - 1)/2 x q(q + 1)/2 and we wish to invert

B'B , it is clear that n(n - 1)/2 must be at least as large as q(q + 1)/2

which implies that q < n - 1 . This clearly poses no serious problems, since

the goal of factor analysis is to isolate factors which are "substantially"

smaller in number than the number of observed measures.

The restriction that q < n - 1 does not necessarily imply that B'B

is of full rank and thus invertible as needed to compute a solution. Since

B is computed from elements of a rank q matrix one might be initially

suspicious about the full column rank assertion of B . However, by

appealing to rather simple notions of no column linear dependencies existing

in B , it can be shown that B is of full collimn rank if and only if P is.

The most serious limitations of the solution is computer capacity to

invert B'B . Problems with four or five factors, or even 10 or 15 present

no difficulty, but a 20-factor problem, say, simply cannot be handled since

we need to invert a 210 x 210 matrix. Computer storage problems, however, are

almost completely a function of the number of factors; a fairly large number

of tests can easily be handled.

A problem not typically treated involving the estimation of covariance

matrices is the restriction that the solution matrix be Gramian. The general

solutionpresentedaboveinnowayimpliesthatCis Gramian. Along these

lines an interesting feature of the model equation (11) is that it can be

rewritten to reflect various hypotheses. An example would be

6
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j = i+1,i+2,...,n
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q q

Pik-P jk
E E $km(pikpjm PimPjd eij

k=1 Z=1 m=Z+1

which differs from (11) only by assuming that y1, has unities on the

diagonal and is thus a correlation matrix. This is not necessarily a very

interesting hypothesis, but it does indicate that the model is fairly flexible.

If we should wish, we can control departures from Gramian form by observing

them and reformulating the model as exemplified in (15). In one set cf data

actually analyzed a small negative value occurred for one of the diagonal values

of (1) . In this case it seemed reasonable to assume that this factor was simply

not operating at all in this group; the data for the group in question were

reanalyzed assuming zero variances and covariances for this factor.

A flexible computer program to perform the above analysis has been written

for an IBM/360 (Pennell, 1970). The program is monitored by a driver program

which allocates storage to the data in hand in such a way as to minimize the

portion of the machine needed and thus minimize costs. The program also

includes an automatic reanalysis feature upon detection of negative variances

it 4 .

IV. Example

In order to illustrate the procedure, data from the Holzinger and

Swineford (1939) monograph were used. Scores on 24 cognitive tests were

obtained from seventh and eighth grade subjects from two schools. There are

a variety of .rays in which the data could be broken down; however, for our

9
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purposes the total sample was divided into male and female data. Starting

from the raw data the correlation matrices in Table 1 were computed where

N = 146 for males and N = 155 for females.

Insert Table 1 about here

The pooled correlation matrix was factored using principal factor analysis

and iterated communalities for four factors. The final solution was then

rotated using direct dblimin (Harman, 1967) which produced a good fit to

various published solutions. The factors are usually identified along the

lines of a spatial relations factor (I), a verbal factor (II), a perceptual

motor speed factor (III), and a memory factor (IV). The factor intercorrelation

matrix for the pooled sample is presented in Table 2, while subgroup factor

correlation matrices and factor variances are presented in Table 3.

Insert Tables 2 and 3 about here

The fit of the model to the malefemale data is quite good. A. rough index

of fit is E'E/0'0 which gives the ratio of the sum of squared error to the

sum of squared parameters to be fitted. For the males this index is .052, and

for the females it is .031.

Two features of the data are worthy of note. Firsts the generally higher

factor intercorrelations for the females suggest somewhat less differentiation

of the traits measured by the factors. Notable, as well, is the significantly

lower variance for the verbal factor for the females. Even though scores on

the measures constituting this factor tend to be higher for females, this

factor is a good deal less important in explaining differences in the original

measures.
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Table 2

Pooled Factor Correlation Matrix (N = 301)

1.0 .245

1.0

.249

.268

1.0

.404

.383

.267

1.0
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Table 3

Factor Correlations and Factor Variances for

Males (N = 146) and Females (N = 155)

Females

-

.354

.321

.466

.154

-

.383

.44o

Males

.167

.179

.326

.527

.541

.192

Factor
Variances

M

F

.886

1.107

1.264

.752

1.035

.969

.954

1.044
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